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a b s t r a c t

The effect of automatic priming of behaviour by linguistic cues is well established. However, as yet these
effects have not been directly demonstrated for eye movement responses. We investigated the effect of
linguistic cues on eye movements using a modified version of the Stroop task in which a saccade was
made to the location of a peripheral colour patch which matched the ‘‘ink” colour of a centrally presented
word cue. The words were either colour words (‘‘red”, ‘‘green”, ‘‘blue”, ‘‘yellow”) or location words (‘‘up”,
‘‘down”, ‘‘left”, ‘‘right”). As in the original version of the Stroop task the identity of the word could be
either congruent or incongruent with the response location. The results showed that oculomotor pro-
gramming was influenced by word identity, even though the written word provided no task relevant
information. Saccade latency was increased on incongruent trials and an increased frequency of error sac-
cades was observed in the direction congruent with the word identity. The results argue against tradi-
tional distinctions between reflexive and voluntary programming of saccades and suggest that
linguistic cues can also influence eye movement programming in an automatic manner.

� 2009 Published by Elsevier Ltd.
1. Introduction

Unlike other animals humans can coordinate visuo-motor
behaviour in response to spoken and written language. This pro-
cess is usually assumed to rely on poorly specified cognitive mech-
anisms, although a number of studies have now shown how motor
response programming can be invoked in a more ‘‘automatic”
manner by linguistic and symbolic cue. These effects have been
demonstrated using press button manual and vocal response reac-
tion time measures (Hommel, Pratt, Colzato, & Godijn, 2001; Lo-
gan, 1995; Logan & Zbrodoff, 1998), although no research to date
has directly investigated whether such effects occur in the control
of eye movements.

A common task used to study such interactions in the non-ocu-
lomotor domain has been the Stroop task (MacLeod, 1991; Stroop,
1935). In this task, participants are asked to respond to the colour
of the ink in which a word is printed, whilst ignoring the word it-
self. Sometimes the identity of the irrelevant word conflicts with
the colour to be named (e.g. the word ‘‘red” printed in yellow). In-
creased response times and overt response errors are observed for
such stimuli relative to those for which there is no conflict (e.g.
‘‘top” in yellow or ‘‘yellow” written in yellow). The influence of
Elsevier Ltd.
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word identity cannot be entirely suppressed even when subjects
are instructed to respond only to the colour in which it is printed.

Given the evidence for automatic activation of manual/vocal re-
sponses by linguistic cues in the Stroop task, it is notable that no
studies have shown such effects on saccade programming. Instead,
a large number of studies have demonstrated involuntary program-
ming of saccades to peripheral visual onsets. For example, the la-
tency of saccades increases under conditions for which a task
irrelevant visual stimulus is presented prior to saccade execution
(McSorley, Haggard, & Walker, 2004; Ross & Ross, 1980; Walker,
Deubel, Schneider, & Findlay, 1997). The presence of ‘‘Distractor”
stimuli also influences the spatial parameters of saccades (i.e. tra-
jectory and amplitude) and often results in the execution of invol-
untary saccades (e.g. Hallett & Adams, 1980; Ludwig & Gilchrist,
2002; Theeuwes, Kramer, Hahn, & Irwin, 1998). The frontal lobe of
the cerebral cortex is thought to mediate inhibitory influences over
saccades in order to suppress the majority of such ‘‘capture errors”
in healthy individuals. Damage in this region has been shown to be
associated with increases in involuntary saccades to peripheral on-
sets (Hodgson, Chamberlain, Parris, James, Gutowski, Husain & Ken-
nard, 2007; Guitton, Buchtel, & Douglas, 1985; Machado & Rafal,
2004; Paus et al., 1991; Husain, Parton, Hodgson, Mort, & Rees,
2003; Walker, Husain, Hodgson, Harrison, & Kennard, 1998).

Other work in the domain of psycho-linguistics suggests that
automatic programming of saccades may also occur in response
to linguistic cues. In the so-called ‘‘visual world” paradigm and
its variants, participants listen to an auditory description of a
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Fig. 1. Schematic of the oculomotor Stroop task showing the sequence of events on
a congruent cue trial in the Colour Word condition.
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required action and associated object–object/object–action rela-
tionships whilst viewing a naturalistic visual scene (Tanenhaus,
Spivey-Knowlton, Eberhard, & Sedivy, 1995). The manner in which
participants direct their gaze to components of the display is found
to mirror the process of linguistic disambiguation occurring whilst
decoding the sentence. For example, Allopenna, Magnuson, and
Tanenhaus (1998) constructed displays in which distractor items
could be phonologically similar or unrelated to target items in
the display. Within 300 ms of onset of the relevant auditory word,
eye movements were more likely to be directed to the target stim-
ulus and phonologically related items compared to unrelated
items. Other work has shown that even during passive viewing
of a picture whilst hearing an acoustically presented sentence,
eye movements are spontaneously directed to the relevant compo-
nents of the scene (Cooper, 1974; Eberhard, Spivey-Knowlton, Se-
divy, & Tanenhaus, 1995; Altmann & Kamide, 1999). This
strongly suggests that linguistic stimuli cause automatic program-
ming of saccades, although this has not been directly tested in a
task for which the semantic content of word stimuli must be ig-
nored to perform the task efficiently. Establishing the existence
of such direct linkages between language and saccades would con-
siderably simplify our understanding of the processes underlying
some types of linguistic communication, such as the conversa-
tional language used by individuals cooperating in the perfor-
mance of a visuo-spatial task (Tanenhaus & Brown-Schmidt, 2008).

In order to directly test whether saccade programming is sub-
ject to automatic influences by linguistic cues we devised a version
of the Stroop task which required a saccadic response rather than a
verbal or press button response. Each trial in the task involved the
presentation of a written ‘‘cue” word at the fixation point. The
word either referred to a particular location (‘‘up”, ‘‘down”, ‘‘left”,
‘‘right”) or colour (‘‘red”, ‘‘blue”, ‘‘green”, ‘‘yellow”). In each case
the subjects’ task was to respond by looking towards one of four
colour patches that matched the colour in which the word was
written and to ignore the word form/identity. An effect of word
form on saccade latencies and/or the direction of overt errors in
the task would be consistent with a direct effect of linguistic stim-
uli on saccade generation similar to that found for peripheral
onsets.

2. Materials and method

2.1. Participants

Ten University of Exeter students and staff participated in the
study (four male) aged between 22 and 40 (M = 27 yrs 10 mths;
SD = 5 yrs 4 mths). All participants had normal or corrected to nor-
mal visual acuity and normal colour vision. The study was ap-
proved by the School of Psychology ethics committee, University
of Exeter.

2.2. Display and stimuli

Stimuli were presented on an Iyama vision master Pro452
21 in colour monitor operating at 100 Hz. Participants were
seated 60 cm from the screen and made saccadic responses to-
wards one of four target colour ‘‘patches” in the periphery
(Fig. 1). The colour patches subtended approximately 3� of arc
at an eccentricity of 7.5� from the fixation point. The Stroop
word stimuli were presented at fixation. In the Colour Word
condition, the Stroop stimulus consisted of the word ‘red’, ‘blue’,
‘green’ or ‘yellow’ in Times New Roman font. On Congruent trials
the colour words were always presented in their corresponding
‘‘ink” colour i.e. the word ‘red’ in red. For incongruent trials
the colour words were displayed in an alternative colour which
matched one of the peripheral response boxes i.e. the word ‘red’
displayed in blue. In the Direction Word condition the centrally
presented Stroop stimulus was one of the four direction words
‘up’, ‘down’, ‘left’ and ‘right’. Congruent stimuli in this condition
were composed of the direction words presented in the same
colour as the patch in the corresponding location. For example
the blue square was presented at the top of the screen therefore
the word ‘up’ displayed in blue was congruent whereas the word
‘up’ displayed in yellow was incongruent. In both conditions
Neutral trial stimuli consisted of four capital X’s presented at fix-
ation, displayed in a colour matching one of the peripheral re-
sponse location.

2.3. Procedure

Each condition (Colour Word/Direction Word) consisted of 108
trials run as a single block containing 36 trials each of the congru-
ent, neutral and incongruent stimuli presented in a pseudorandom
order that varied between subjects. Each congruent and neutral
stimulus type was presented nine times. The order of the blocks
was counterbalanced across subjects. Participants were instructed
to respond to the colour of the font in which the word was pre-
sented as quickly and as accurately as possible by directing their
gaze towards the colour patch which matched the font colour of
the word presented in the centre of the screen. They were told that
the identity of the word itself was irrelevant to the task. Instruc-
tions were displayed on the screen prior to the start of each block
and the experimenter checked with each participant prior to com-
mencing that they fully understood the task requirements. A short
practice block of 10 words was presented prior to each block and
excluded from the main analysis.

Each individual trial contained the following sequence of events
(Fig. 1). Prior to the start of the trial a fixation point stimulus was
presented centrally. This was extinguished following a period of
continuous fixation lasting 1200 m. The Stroop word stimulus
was then displayed at the central location simultaneously with
the onset of the four peripheral colour patches. A tone sounded
when participant’s gaze had been recorded at the correct target
location for a period in excess of 1200 ms or at the end of a
5000 ms time out period. A blank screen was then presented for
1500 ms prior to the commencement of the next trial.

2.4. Eye movement recording and analysis

Eye movements were recorded using an Eyelink II Eyetracking
system (SR research Ltd.), a video based pupil/CR tracker with head
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movement compensation system. Eye movements were sampled
at 250 Hz. Calibration and validation of eye movements was car-
ried out prior to the commencement of each trial block using a nine
point calibration process.

Saccade parameters were extracted off line using Eyelink Data-
Viewer software (SR Research Ltd). Saccades were detected using a
combined velocity and acceleration criteria of 30 �/s and 8000 �/s2.
Saccades with a latency greater than 2 standard deviations from
the mean or <80 ms were excluded from analysis as were saccades
with an amplitude <2�. The primary measure of interest was the la-
tency of onset of the first saccadic response from the onset of the
target colour patches and cue word. The amplitude of the initial
saccade following stimulus onset was also recorded as was the
angular direction of the saccade end-point relative to fixation. Sac-
cades which deviated by ±45� from the correct target direction
were classified as response errors and analysed separately.

3. Results

3.1. Analysis of correct trials

3.1.1. Reaction times
The mean latency of response of the first saccade following on-

set of the word cue and response array (i.e. reaction time) were
analysed across subjects using a 2 way repeated measures analysis
of variance (ANOVA) with word type (Colour Word/Direction
Word) and trial type (Incongruent, Congruent, Neutral) as factors.
This analysis showed a significant effect of trial type
(F(2,18) = 5.29, p = 0.016), but no main effect of word type
(F(1,9) = 0.973). Reaction times were increased for control trials
relative to trials where the word was congruent with target loca-
tion, with incongruent cue trials showing the longest mean reac-
tion times across subjects. Although mean response times
indicated that the congruency effect was larger in the Colour Word
condition, the interaction effect between word type and trial type
did not reach significance (F(2,18) = 0.43) (Fig. 2). Direct means
comparisons between conditions revealed a significant difference
between congruent and incongruent trial latencies (repeated mea-
sures t-test: t = 2.43, d.f. 9, p < 0.05) and marginally significant dif-
ferences between congruent versus neutral (t = 1.87, p = 0.09) and
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Fig. 2. Inter-subject mean response times and error rates with standar
neutral versus incongruent (t = 1.89, p = 0.09) trial latencies across
subjects

3.2. Saccade amplitude and direction

No significant variation was found in the amplitude of the pri-
mary saccade dependent upon trial type (Congruent, Incongruent,
Neutral) (F(2,18) = 0.067). For incongruent trial responses classi-
fied as correct, we also examined the effect of the relative position-
ing of the target patch and the location congruent with the identity
(rather than ‘‘ink” colour) of the cue word. Specifically we mea-
sured the angular direction of saccades relative to the central fixa-
tion point and examined how this varied dependent upon whether
the ‘‘distracting” location was in a clockwise, anti-clockwise or di-
rectly opposite position relative to the correct target colour patch.
This analysis revealed no significant variation in the angular devi-
ation of the saccade trajectory dependent upon the relative loca-
tion of the target and distracting location (F(2,18) = 0.04).

3.3. Analysis of errors

On 4.6% of all trials (Congruent, Neutral and Incongruent) the
first saccade following stimulus onset was executed in the wrong
direction. These trials were classified as errors and analysed sepa-
rately (see eye movement recording and analysis above). A 2 way
analysis of variance on the number of errors made by each subject
with word type (Colour Word/Direction Word) and trial type (Con-
gruent, Neutral, Incongruent) as factors showed that error rates in-
creased for incongruent relative to neutral and congruent trials
(F(2,18) = 8.23, p = 0.003). There was no significant main
(F(1,9) = 3.10, p = 0.11) or interaction effect of word type
(F(2,18) = 0.29) (Fig. 2). Direct means comparisons between condi-
tions revealed a significant difference between congruent and
incongruent (repeated measures t-test: t = 3.31, d.f. 9 p < 0.01)
and congruent and neutral trial error rates (t = 4.58, p < 0.001),
and a marginally significant differences between neutral and
incongruent trial errors (t = 2.24, p = 0.05). Overall there was a
trend for errors to have shorter latencies than correct responses
(errors: 402 ms correct: 436 ms), but this difference did not reach
statistical significance (F(1,9) = 2.72, p = 0.13).
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Fig. 4. Frequency histogram for inter-saccade intervals between error saccades and
subsequent corrective movements, showing percentage of corrections occurring in
each 50 ms time bin following the end of the primary (errorneous) saccade.
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On a given incongruent error trial the mean probability of the
primary saccade being directed towards a location unrelated to
the cue word was 0.17, whereas the probability of an error being
directed to the location congruent with the cue word identity
was 0.67 (compared to the expected probability of 0.33 for both
location types). An ANOVA contrasting the probability of an error
being directed towards locations which were either congruent or
incongruent with the Colour/Location word conditions revealed a
significant bias towards the location congruent with the word
identity across subjects (F(1,9) = 7.651, p = 0.022). Importantly, ac-
tual decision errors where subjects failed to correctly fixate the
correct colour patch at the end of the trial never occurred. Saccades
directed to an incorrect location were always followed by second-
ary movements towards the correct colour patch, indicating that
all subjects correctly understood the task (see Fig. 3). The fre-
quency distribution of inter-saccade intervals following errors is
shown in Fig. 4, showing that the many errors were followed by
corrective saccades within 100 ms of the end of the primary sac-
cade. Finally, we examined the relationship between the inter-sac-
cade interval and the amplitude of the primary saccade. Although a
trend was observed towards shorter inter-saccade interval errors
to be preceded by smaller amplitude saccades in some partici-
pants, this effect was not found to be consistent across individuals
and was not statistically significant (Pearson correlation coefficient
amplitude versus inter-saccade interval = 0.032).

4. Discussion

The demonstration of a saccadic Stroop effect indicates that the
presentation of linguistic stimuli can influence saccade program-
ming even when word form is irrelevant to task performance. Sac-
cade latency was increased when the Stroop word was incongruent
with the Location/Colour of the correct response location (in-
structed by the ‘‘ink” colour of the Stroop word) compared to con-
gruent cue trials (Fig. 2). Further, overt saccade errors were
observed towards the location matching the word form rather than
text colour at a rate above that expected by chance. This suggests
that written words (or more precisely the referents in their mean-
Fig. 3. Saccade trajectory plots of error trials for which the primary saccade was directe
colour (For interpretation of colour in Fig. 3, readers are referred to the web version of
ing) can also sometimes ‘‘capture” saccadic eye movements in a
manner similar to that previously reported for peripheral onsets
(e.g. Hallett & Adams, 1980; Ross & Ross, 1980; Theeuwes et al.,
1998; Walker et al., 1997).

Traditionally, oculomotor researchers have made a distinction
between reflexive/exogenously driven saccades towards peripheral
stimuli and voluntary/endogenously driven movements instructed
via symbolic cues (including written words and verbal instruc-
tions). An analogous distinction is also often made in the domain
of covert attentional shifts in the absence of eye movements (Pos-
ner, 1980; Müller & Rabbitt, 1989; Crawford & Müller, 1992). How-
ever, the present experiment suggests that central/symbolic cues
can influence saccade programming in a more direct/involuntary
manner. Consistent with the present findings, other researchers
have reported a biasing effect of symbolic cues such as arrows
d towards the location congruent with the word cue identity rather than its ‘‘ink”
this article.)
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and numerical digits on covert attention and eye movements, even
when such cues are uninformative concerning likely target loca-
tions (Fischer, Warlop, Hill, & Fias, 2004; Tipples, 2002). Other
work has also revealed that short latency orienting eye movements
are made to relevant objects in naturalistic visual scenes when
viewers simultaneously listen to an auditory speech stream
describing the scene (Altmann & Kamide, 1999).

Whilst the neural circuitry underlying the control of saccades to
peripheral visual stimuli is well specified (e.g. Scudder, 1988) the
influence of higher level factors is less well understood. Findlay
and Walker (1999) have proposed a model of saccade program-
ming within which separate ‘‘where” and ‘‘when” processing path-
ways determine the spatial end-point and onset time of saccades.
The model successfully accounts for automatic capture of saccades
by peripheral visual events via a direct influence of peripheral
stimulus onsets on both processing pathways, but does not provide
a mechanism via which symbolic cues could directly initiate sac-
cades. The presentation of a stimulus at fixation is assumed to have
an overall inhibitory effect on saccade generation within the mod-
el, with symbolic cues influencing eye movements via unspecified
‘‘cognitive” influences. We propose instead that when symbolic/
linguistic stimuli have been repeatedly paired in the wider envi-
ronment with peripheral stimulus onsets/saccades, direct linkages
become established with associated saccade programmes. Once
these learned associations have been established they are activated
even in contexts where cues are unpredictive of target location/
identity as in the case of the present oculomotor Stroop task.

Many other studies have used manual (key press) responses
rather than the original vocal colour naming responses to index
Stroop interference (MacLeod, 1991). In the manual version of the
task participants learn a fixed mapping linking different colours
with individual response keys (e.g. Keele, 1972; Parris, Sharma, &
Weekes, 2007) and this mapping remains constant throughout the
task. With this in mind we also kept the layout of the peripheral col-
oured response patches fixed across trials/participants in the pres-
ent study. However, this aspect of the methodology leads to the
possibility that our subjects learned to make direct associations be-
tween colours and corresponding spatial locations, rather than col-
our words and responses towards targets of the respective colour. If
this were the case then randomization of the peripheral colour
patch locations should lead to a reduction in the Stroop effect, par-
ticularly in the Colour Word condition. We therefore ran an addi-
tional 12 participants using an identical procedure, the only
difference being that the locations at which the colour patches ap-
peared varied randomly from trial to trial (whilst still maintaining
the general up, down, left, right configuration). The results showed
that the magnitude of the congruency effect on response times and
error rates remained unchanged in both word type conditions (see
supplementary Fig. s1 online). Further as in the main experiment
erroroneous saccades on incongruent trials were far more likely to
be directed to the word-congruent location than any other location
in both the Direction Word and Colour Word condition (66% of
incongruent trial errors were directed to the word-congruent loca-
tion compared to 17% for the remaining two locations).

It is interesting to note that although errors and latencies were
increased on incongruent trials in the current study, no variation
was seen in the trajectory (amplitude/direction) of correct sac-
cades on incongruent compared to congruent trials. Some studies
of the manual version of the Stroop task have indicated that Stroop
interference is limited to the response programming stage and is
not evident in the duration or spatial characteristics of motor re-
sponses once executed (Logan & Zbrodoff, 1998). However, we can-
not exclude the possibility that under some circumstances the
spatial characteristics of saccades would also show effects on
incongruent trials. Previous work has shown how increasing sepa-
ration between target and distractor stimuli can lead to an increase
in the effect of the distractor on saccade latency and a reduction in
the magnitude of the effect on the spatial trajectory of saccades
(McSorley et al., 2004). There appears to be a critical angular sep-
aration within which temporally contiguous saccade goals produce
spatial averaging or centre-of-gravity effects on saccadic responses
(Findlay, 1982; Walker et al., 1997). The coloured response patches
in the present study were always orthogonal to each other, perhaps
explaining why effects were only observed on errors and response
latencies rather than the spatial parameters of saccades. Further
research could vary the angular separation between the peripheral
response locations in the saccade Stroop task to investigate this
possibility.

An aspect of the current findings that has implications for more
theoretical accounts of the Stroop effect is the observation of very
short inter-saccade intervals between initial errors and subsequent
corrective saccades (often <100 ms, i.e. shorter than a typical sacc-
adic reaction time) (Fig. 4). Early accounts of the Stroop effect had
proposed that processing of the stimulus attributes and selection
of the appropriate response proceeded in a serial manner, with a
processing bottleneck occurring at the response selection stage
(see MacLeod for a review). However, more recent accounts have
envisaged Stroop interference as the product of a parallel process
in which gathering of information/evidence plays an integral role
in response selection processes (Cohen, Dunbar, & McClelland,
1990; Logan, 1980). In these models a response occurs when a
hypothetical output unit’s activity exceeds a threshold level. How-
ever, output units associated with other potential responses will
also continue to accrue information, pushing them closer to
threshold. Consistent with this idea, the very short latency correc-
tions observed in the saccadic version of the task strongly suggest
that saccadic responses are programmed in parallel to two goals
defined by both the cue word identity and colour.

Future investigations could assess the extent to which damage
to the frontal cerebral cortex leads to an increase in the tendency
for word cues to ‘‘capture” saccadic behaviour. The saccadic Stroop
task described here also has a pragmatic advantage for testing def-
icits in inhibitory control in neurological patients over the more
commonly used manual press button response and verbal response
versions of the task. This is because many patients with frontal
lobe damage suffer from primary impairments in skeletomotor
movements (e.g. hemiplegia) or speech production (i.e. aphasia).
In contrast, sustained primary impairments in saccadic movement
production following frontal lobe damage appear to be less
common.

In conclusion, our results demonstrate that the presentation of
linguistic cues can affect saccade programming processes even
when words are irrelevant to the instructed task. We suggest that
presentation of written word cues can lead to direct activation of
saccadic motor programmes in a manner similar to that reported
elsewhere for peripheral visual onsets.
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